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Abstract. A quantum mechanical treatment of the effects of stacking faults on dechannelling
is given. A simple harmonic model for the planar potential due to two planes surrounding the
channel, and the corresponding bound states in the potential are considered. At the stacking
fault boundary, these states make transitions for which the probabilities have been calculated,
using the ‘sudden approximation’.

1. Introduction

Most of the work on dechannelling caused by defects is based on several simplifying
assumptions, restricting the validity of the results. For example, although qualitatively
the results on the energy dependence of dechannelling, etc, are reliable, quantitatively the
accuracy is poor. Therefore more work, possibly using quantum mechanical and/or field
theoretical techniques, is needed to treat the whole defect problem in a more accurate
way. The classical description of dechannelling caused by defects already given in earlier
studies [1–4] demonstrates that protons,α-particles and other heavy ions behave classically,
and the results obtained by using the classical description are in fairly good agreement with
experimental results. However, electrons, positrons, mesons, etc, should be treated quantum
mechanically [5] since quantum and diffractional effects [6] are important for these light
particles. The dipole approximation [7, 8] is valid for the study of channelling radiation in
the MeV range. In such a consideration of heavy ions and high-energy electrons/positrons
the number of quantum levels increases (n ∝ √γm) [9] and the motion becomes more
classical. However, quantum effects are dominant when the number of quantum states
supported in the potential well is small [10]. So it will be very interesting to have a
quantum description of the effects of defects on channelling in solids. In this spirit a
quantum mechanical formulation is developed and a description for dechannelling is given,
with stacking faults as a special case. The assumption of the separability of transverse and
longitudinal motion is fairly accurate, and we continue to use it in the quantum description
also.

In this work, keeping in mind the earlier discussions about the choice of interatomic
potentials for the study of defects, the power-law potential [11–13] proposed by Pathaket
al has been used. We consider positrons of energy 12.25 MeV (γ = 25) channelled along
Al(111) with stacking faults, with the specific assumptions that the crystal is otherwise pure
and clean, etc. The appropriate dechannelling probabilities are calculated.

† Author to whom any correspondence should be addressed. Fax:+91-40-3010120; e-mail:
appsp@uohyd.ernet.in.
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Figure 1. (a) The stacking fault situation involving (i) improved channelling, (ii) dechannelling
at the fault, (iii) dechannelling after the fault, and (iv) the particle becoming well channelled
(with zero amplitude) due to the various phases in which the incident particle is approaching
the stacking fault region. (b) The obstruction of potential valleys present on one side by the
potential hills at the S.F., corresponding to a typical FCC crystal, where the shift is usually
dp/3.

2. The quantum description

A stacking fault (S.F.) is an example of an obstruction to particle motion along
crystallographic channels without any distortion, as shown in figure 1(a). At the stacking
fault, the potential valleys present on one side (say, on the left) are obstructed by the
potential hills on the other side of the fault (say, on the right) as shown in figure 1(b).
For any charged particle managing to pass through the stacking fault, the longitudinal
component of its energy is not much affected, but the transverse energy [14, 15] undergoes
a change. Since the transverse potential for positrons (or any positive particles) is well
approximated by a harmonic potential, the presence of a stacking fault is described by two
similar harmonic potentials but shifted by the amount of the stacking shift. The available



The effects of stacking faults on dechannelling 1711

space for the particle just at the fault is slightly reduced because of the shifting of the atomic
plane. Since the coupling constantα is a measure of the force constant of the harmonic
potential it changes toα′, and this is due to the fact that the force constant is modified due
to the reduction of the effective planar channel width available for crossing the fault, as
shown in figure 1. The channelling phenomena in this situation are governed by the overlap
integral of the wave functions corresponding to the left-hand channel and the right-hand
channel. Assuming that the stacking shift isas w.r.t. the left-hand channel as shown in
figure 1(a), we can write

ψi = ψL =
(

α√
π2n n!

)1/2

exp

(−α2x2

2

)
Hn(αx) (1)

ψf = ψR =
(

α′√
π2m m!

)1/2

exp

(−α′2(x + as)2
2

)
Hm(α

′x + α′as). (2)

The matrix element is given by

〈ψi |ψf 〉 =
(

αα′

π2m+nm!n!

)1/2

In,m

where

In,m =
∫ ∞
−∞

exp

{
−1

2
[α2x2+ α′2(x + as)2]

}
Hn(αx)Hm(α

′x + α′as) dx. (3)

Heren andm represent harmonic oscillator states corresponding to the initial state (the left-
hand part of the channel before the fault) and the final state (after the fault) respectively.

2.1. The ‘sudden’ approximation [16]

Since the energy of the incident particle is high, the time spent by the charged particle at
the interface between the two channels is very small compared to the time spent by it in
either of the channels (i.e., left or right). Hence one can use the ‘sudden’ approximation
[16] so that the wave functions on either side of the fault are identical in coupling terms.
That means that the discontinuity at the boundary cannot be ‘seen’ during channelling, and
α′ equalsα in expression (3).

If we write

ψi(x) = |n〉 and ψf (x) = |m〉
then under the sudden approximation the overlap integral〈ψi |ψf 〉 can be written as

〈n|m〉 = 1√
π2m+nm!n!

exp{−α2a2
s /4}

∫ ∞
−∞

exp

{
−
(
t + b

2

)2
}
Hn(t)Hm(t + b) dt (4)

whereb = αas andαx = t . The general expression for〈n|m〉 is obtained by evaluating the
above integral and we get

〈n|m〉 = exp(−α2a2
s /4)√

2m+nm!n!

( m∑
r=max(0,m−n)

(−1)n−m+r2m−rmcr
n!

(n−m+ r)! (b)
n−m+2r

)
. (5)

The transition/channelling probability, in general, is then obtained through the expression
pm→n = |〈n|m〉|2 = pn→m, and the number of quantum states in the harmonic potential
well can be calculated using the equation(

nmax+ 1

2

)
h̄ω = 1

2
k1x

2
max. (6)
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In the above equations,

α =
√
mω

h̄
ω =

√
k1

γm
.

γm is the relativistic mass [18], andxmax= dp/2− aT.F. = l − aT.F.. To calculate the
force constant, we consider the planar potential [12, 13, 17]

V (x) = 2πz1z2e
2Ca2

T .F.Np

(
1

l + aT.F. − x +
1

l + aT.F. + x
)
.

This can be expanded aroundx = 0, and we get

V (x) = V0+ 1

2
k1x

2

where

V0 = 4πz1z2e
2CaT.F.Np

(l + aT.F.) k1 = 2V0

(l + aT.F.)2 .

In the above equationsdp is the interplanar distance,aT.F. is the Thomas–Fermi
screening radius,C is the Lindhard constant given by

√
3, z1 andz2 are the atomic numbers

of the projectile particle and the target atom respectively, andNp = Ndp, N being the bulk
density of atoms in the crystal. Using the above expressions, the number of quantum states
for positrons channelled along(111) planes in an aluminium target has been calculated to
be nmax= 3.

2.2. Dechannelling probabilities

The initial state of the particle is fixed (in the left-hand part of the channel). It can go on
to occupy any one of the states in the right-hand-side channel (after the fault). All of the
possibilities that one can expect are

0−→ 0 0−→ 1 0−→ 2 0−→ 3
1−→ 0 1−→ 1 1−→ 2 1−→ 3
2−→ 0 2−→ 1 2−→ 2 2−→ 3
3−→ 0 3−→ 1 3−→ 2 3−→ 3.

The probability for a particle to remain channelled after the fault is given by

pn =
3∑

m=0

|〈n|m〉|2. (7)

The dechannelling probability is defined as

χn = 1− pn. (8)

The initial state of the particle|n〉 is fixed, and it can be 0, 1, 2, or 3.
One can find the matrix elements and the channelling probabilities for various states, by

substituting appropriate values ofn andm in (5), and some numerical results for specific
cases have been given in table 1.
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Table 1. The variation of the dechannelling probabilities for positrons in Al with the stacking
shift for various initial states.

Dechannelling probabilities

Shift in units of l χ0 χ1 χ2 χ3

0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.07 0.07 0.17
0.20 0.00 0.21 0.29 0.46
0.30 0.00 0.33 0.57 0.56
0.40 0.01 0.38 0.71 0.51
0.50 0.04 0.38 0.62 0.52
0.60 0.10 0.37 0.43 0.60
0.70 0.22 0.36 0.32 0.63
0.80 0.39 0.35 0.37 0.61
0.90 0.56 0.38 0.48 0.63
1.00 0.72 0.47 0.56 0.69

2.3. The dechannelling effects at the fault

In the quantum mechanical treatment we start with a wave function describing the incident
particle (ψL) coming from the left. This wave function is of the form of a wave packet
along the longitudinal direction (z) and a harmonic oscillator in the transverse direction (x).
When this packet reaches the fault, the general transverse planar potential can be described
by an expression of the form

V (z, x) = 1

2
k1x

2H(z0− z)+ 1

2
k1(x + as)2H(z − z0)

whereH(z) is a step function which equals one for positive arguments and zero for negative
arguments. The solution of the Schrödinger equation for this potential is different in two
parts of the crystal, i.e., forz < z0 and for z > z0. At the boundaryz = z0, part of this
wave function is reflected and part is transmitted. The general solution for the left-hand
part is of the form

ψL(z, x) = (A exp(ikz)+ B exp(−ikz))ϕn(x).

Similarly the wave function corresponding to the transmitted particle after the fault will
take the form

ψR(z, x) = C exp(ik′z)ϕm(x + as).
So one can match the wave functions [16] at the stacking fault (z = z0), which gives

the reflected flux(Nr) and the transmitted flux (Nt ) in terms of the incident flux(Ni) at the
fault. The corresponding reflection and transmission coefficients are given by

R = Nr

Ni
=
(
k − k′
k + k′

)2

T = Nt

Ni
= 4kk′

(k + k′)2 |〈m|n〉|
2. (9)

It is evident from the above expressions that there are some particles which are neither
in the left-hand part of the channel nor in the right-hand part. These particles will not
experience the standard harmonic potential since they have already come out of the channel.
These may be dechannelled particles which hit the fault and depart from the channel. This
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situation corresponds to dechannelling at the fault. So one can define the dechannelling
coefficient(D) in terms of the dechannelled fluxNd (=Ni − (Nr +Nt)) as

D = Nd

Ni
= 4kk′

(k + k′)2 (1− pn→m). (10)

Since the total energy of the positron is very high, the positron cannot recognize the
presence of the fault during the passage through the fault unless it hits the fault directly. The
longitudinal momentum is therefore likely to be unaltered, and sok′ equalsk, andR = 0.
So in the high-energy limit we get the same results as were obtained in the calculations
described in the above sections.

2.4. The effects of periodicity in the transverse space [7]

The transverse potential is in principle a periodic function with perioddp; hence the wave
functions are of Bloch type. One can estimate the periodicity effect due to the remaining
wells by evaluating the dipole momentum. An estimate is given here for the contribution
of the remaining wells atn = 1 obtained using equation (3.8) of reference [7]; we get

ᾱx − αx = −0.001 0511.

Therefore the contribution of the other wells to the dipole momentum (ᾱx) is negligibly
small when compared to the dipole momentum coresponding to a single well (αx ≈ 1.001);
hence the periodicity effects are likely to be negligible for our channelling/dechannelling
probability calculations.

3. Results and conclusions

We have developed a quantum theory of dechannelling due to defects with special reference
to stacking faults. The theory is valid as long as the number of quantum states supported
by the transverse potential due to the two planes is small. This happens for light particles
like positrons for which, to the best of our knowledge, no previous calculations exist.

Table 2. A comparison of the dechannelling probabilities for a stacking shift ofdp/3 obtained
from a classical calculation with those from the present quantum description.

The present quantum calculations

The classical calculation [12] χ0 χ1 χ2 χ3

0.28 0.17 0.36 0.34 0.63

The dechannelling probabilities for various initial statesχ0, χ1, χ2, andχ3 as a function
of the stacking shift are given in figures 2(a), 2(b), 3(a), and 3(b). The dechannelling
probabilities depend on the intial state. If the particle after passing through the fault goes
to a state which is the same as the initial state, then the transition probability is a maximum
corresponding to the shiftas = 0, as expected because the channel is straight and the particle
will propagate without any obstruction, which can also be seen through the vanishing of
the dechannelling coefficient (D = 0). The channelling probability for a given initial state
is very sensitive to the stacking shift. If the final state is different from the initial state, the
channelling probability drastically oscillates with the stacking shiftas as shown in figures
4 and 5. There are some combinations of〈n|m〉 which lead to maximum dechannelling.
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Figure 2. (a) The variation of the dechannelling
probability with the stacking shift corresponding to
the initial state|0〉 in the left-hand channel. (b) The
variation of the dechannelling probability with the
stacking shift corresponding to the initial state|1〉 in
the left-hand channel.

Figure 3. (a) The variation of the dechannelling
probability with the stacking shift corresponding to
the initial state|2〉 in the left-hand channel. (b) The
variation of the dechannelling probability with the
stacking shift corresponding to the initial state|3〉 in
the left-hand channel.

These may be called dechannelling states. If the particle happens to be in these dechannelling
states, then, whatever the shift may be, there is very high tendency for dechannelling of
the particle in general, and at the fault in particular. In the present case these are 1↔ 3,
2↔ 0, and 3↔ 0; see figures 4(a), 4(b), and 5(b). Detailed experiments are needed to see
the precise effects of this kind of behaviour.

These points indicate that there is another important parameter, i.e., the phase in which
the particle is approaching the stacking fault boundary. This can also be seen explicitly
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Figure 4. (a) The channelling probability as a function of the stacking shiftas in units of l
for various matrix elements symbolically denoted by◦: |〈0|0〉|2; F: |〈1|0〉|2; and♦: |〈2|0〉|2.
(b) The channelling probability as a function of the stacking shiftas in units of l for various
matrix elements symbolically denoted by•: |〈1|1〉|2; ◦: |〈1|2〉|2; andF: |〈1|3〉|2.

from equation (10), which indicates that the dechannelling at the fault will depend upon the
final state that the particle will be in. The non-diagonal matrix elements vanish for zero
shift. This implies that the well-channelled (oscillating) particle suddenly cannot exhibit
oscillatory (minimum-amplitude) behaviour in the absence of stacking faults. The fate
of the particle after the fault will be decided by the amount of the shift. This kind of
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Figure 5. (a) The channelling probability as a function of the stacking shiftas in units of l
for various matrix elements symbolically denoted byF: |〈2|2〉|2; and◦: |〈2|3〉|2. (b) The
channelling probability as a function of the stacking shiftas in units of l for various matrix
elements symbolically denoted by•: |〈3|3〉|2; and◦: |〈3|0〉|2.

dependence on the phase of the approaching particle has also been discussed in a classical
analysis [11, 12].

Mory and Quere [11] discussed some experimental results forχ using a classical
description. An attempt has been made to discuss those results using the present quantum
description, and for that case,nmax turns out to be as large as 278. This clearly shows
that for theα-particle-dechannelling situation a classical treatment will be good enough
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as far as the channelling aspects are concerned. A comparison of the present quantum
mechanical calculation with the classical approach [12] for the specific situation of the
standard stacking shiftdp/3 is shown in the table 2. Experiments on electron/positron
dechannelling are needed to verify these results and to confirm the utility of the present
quantum description. We do not expect the classical results to be valid for positron and
electron dechannelling.

In conclusion, a general expression for the overlap integral〈n|m〉 for arbitrary values of
n andm is given for the first time, and is shown to have remarkable physical significance;
it also reduces the number of laborious analytical calculations involving Hermite functions
required—in particular, for the higher states. This general expression can be used elsewhere.
The usefulness and completeness of this quantum mechanical formulation lies in the fact
that this general expression is valid for various stacking shifts.

There is an interesting left–right symmetry inbuilt in the problem, which is not clearly
realized in the classical description. More refined experiments are needed to check the
predictions.
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